0
Il n'y a pas de produit dans le panier !
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0-9
Your Position: Accueil > Interferon (IFN) Family Proteins

Interferon (IFN) Family Proteins

Interferon (IFN) Family Proteins
Introduction

Interferon (IFN) was first discovered in 1957 by Alick Isaacs and Jean Lindenmann from their initial studies in viral interference. Over the years, various studies about IFN were performed, elucidating its anti-viral activity. It was only until 1980 when IFN could be produced in a large-scale for research use, where pioneering recombinant DNA technology was utilized. IFN proteins were discovered to have both anti-tumor and immunomodulatory functions along with its inherent anti-viral activity, classifying them as a subset of cytokines.

The IFN protein family is organized into three types according to its corresponding receptor: type I, type II and type III; each of which are produced in different cellular locations. IFN-α and IFN-β are the most prominent members of type I IFNs and are mainly produced by pathogenesis-associated molecular patterns (PAMPs). PAMPs are induced by stimulation of Toll-like receptors (TLR) or cytoplasmic pattern recognition receptors located on the cell membrane. Type II IFNs have only one type, IFN-γ, which are produced by a variety of cells in the immune system. This includes innate lymphoid-like cell populations such as innate lymphocytes (ILC) and natural killer (NK) cells, as well as adaptive immune cells consisting of helper T cells 1 (Th1) and CD8 cytotoxic T lymphocytes (CTL). Type III IFNs are mainly produced by epithelial cells in non-hematopoietic cells, where viruses can mediate type III interferon expression in different cell types. However, since these IFNs were discovered in 2003, the exact mechanism of its production is still unknown and is the subject of various academic studies.

The corresponding signaling pathways of the three types of IFNs are also different, where each bind to different compositions of heterodimeric receptor complexes. Intracellular signaling is conducted through the Janus kinase/signal transducer and acts as an activator of transcription (JAK/STAT) pathways.

The main transduction pathways of the IFN signaling

The main transduction pathways of the IFN signaling

Mechanism of action of a drug targeting IFN (Anifrolumab)

Mechanism of action of a drug targeting IFN (Anifrolumab)

Due to the widespread effects of the IFN regulatory pathways, IFN is often associated with the progression of tumor diseases. In vitro studies have shown that IFN can inhibit tumor cell growth by up-regulating the cell cycle and also induce apoptosis by binding to tumor necrosis factor-related apoptosis-inducing ligands. However, in vivo studies have shown that deletion of the type I or type II interferon signaling pathway accelerates tumorigenesis and progression.

The correlation of both type I and II IFN responses to oncogenic properties has highlighted it as a significant pathway for targeted cancer drug resistance. This was observed from the resulting tumor cells after cancer therapy expressing intact or partially intact IFN signaling. As a result, a resistance to viral replication is developed, preventing targeted therapeutics from exerting its normal anti-tumor effects. To combat this, targeted therapies inhibiting JAK/STAT signaling by IFN can be a therapeutic modality to overcome resistance to therapeutic agents.

To assist with your research into the IFN protein family, ACROBiosystems provides a comprehensive catalog of high-quality IFNs to meet your needs in drug discovery, functional evaluation, quality control.

Product Features

HEK293 expressed, native protein conformation

High purity verified by SDS-PAGE

High structural homogeneity verified by SEC-MALS

High bioactivity verified by ELISA/SPR/BLI - protocol available

High batch-to-batch consistency

Product List
Molecule Cat. No. Species Product Description Preorder/Order
Verification Data
High purity and structural homogeneity verified by SDS-PAGE and SEC-MALS
High purity and structural homogeneity verified by SDS-PAGE and SEC-MALS

Human IFN-alpha 1 (Cat. No. IFA-H5258), Fc Tag on SDS-PAGE under reducing (R) condition. The gel was stained overnight with Coomassie Blue. The purity of the protein is greater than 95%.

High purity and structural homogeneity verified by SDS-PAGE and SEC-MALS

The purity of Human IFN-alpha 1, Fc Tag (Cat. No. IFA-H5258) is more than 90% and the molecular weight of this protein is around 90-118 kDa verified by SEC-MALS.

High biological activity verified by ELISA

High biological activity verified by ELISA

Immobilized ActiveMax® Human IFN-gamma, Tag Free (Cat. No. IFG-H4211) at 5 μg/mL (100 μL/well) can bind Human IFN-gamma R1, His Tag (Cat. No. IF1-H5223) with a linear range of 0.01-0.313 μg/mL.

High biological activity verified by ELISA

Immobilized Human IFNAR2, His Tag (Cat. No. IF2-H5224) at 5 μg/mL (100 μL/well) can bind Human IFN-alpha 2b (K46R), Fc Tag (Cat. No. IFB-H5253) with a linear range of 2.4-10 ng/mL.

High biological activity verified by SPR

High affinity verified by SPR and BLI

Loaded Human IFN-alpha 1, His Tag (Cat. No. IFA-H52H9) on HIS1K Biosensor, can bind Human IFNAR1, Fc Tag (Cat. No. IF1-H5253) with an affinity constant of 0.191 μM as determined in BLI assay (ForteBio Octet Red96e).

High affinity verified by SPR and BLI

Mouse IFN-alpha / beta R1, His Tag (Cat. No. IF1-M5225) immobilized on CM5 Chip can bind Mouse IFN-alpha 1, His Tag (Cat. No. IFA-M52H3) with an affinity constant of 2.96 μM as determined in a SPR assay (Biacore 8K).

References
  • 1. Li Q, Tan F, Wang Y, et al. The gamble between oncolytic virus therapy and IFN[J]. Frontiers in Immunology, 2022, 13.https://doi.org/10.3389/fimmu.2022.971674.
  • 2. Zhang X, Zou M, Liang Y, et al. Arctigenin inhibits abnormal germinal center reactions and attenuates murine lupus by inhibiting IFN-I pathway[J]. European Journal of Pharmacology, 2022, 919: 174808.https://doi.org/10.1016/j.ejphar.2022.174808.
  • 3. Barrat F J, Crow M K, Ivashkiv L B. Interferon target-gene expression and epigenomic signatures in health and disease[J]. Nature immunology, 2019, 20(12): 1574-1583.https://doi.org/10.1038/s41590-019-0466-2.
  • 4. Felten R, Scher F, Sagez F, et al. Spotlight on anifrolumab and its potential for the treatment of moderate-to-severe systemic lupus erythematosus: evidence to date[J]. Drug design, development and therapy, 2019, 13: 1535.https://doi.org/10.2147/DDDT.S170969.
ACRO Quality

This web search service is supported by Google Inc.

totop

Laisser un message